NOTE OF ELEMENTARY ANALYSIS II

CHI-WAI LEUNG

1. RIEMANN INTEGRALS

Notation 1.1.

- (i) : All functions f, g, h... are bounded real valued functions defined on [a, b]. And $m \leq f \leq M$.
- (*ii*) : \mathcal{P} : $a = x_0 < x_1 < \dots < x_n = b$ denotes a partition on [a, b]; $\Delta x_i = x_i x_{i-1}$ and $\|\mathcal{P}\| = \max \Delta x_i$.
- (*iii*) : $M_i(f, \mathcal{P}) := \sup\{f(x) : x \in [x_{i-1}, x_i\}; m_i(f, \mathcal{P}) := \inf\{f(x) : x \in [x_{i-1}, x_i\}.$ And $\omega_i(f, \mathcal{P}) = M_i(f, \mathcal{P}) - m_i(f, \mathcal{P}).$
- (iv) : $U(f, \mathcal{P}) := \sum M_i(f, \mathcal{P}) \Delta x_i$; $L(f, \mathcal{P}) := \sum m_i(f, \mathcal{P}) \Delta x_i$.
- (v) : $\Re(f, \mathcal{P}, \{\xi_i\}) := \sum f(\xi_i) \Delta x_i$, where $\xi_i \in [x_{i-1}, x_i]$.
- (vi) : $\Re[a,b]$ is the class of all Riemann integral functions on [a,b].

Definition 1.2. We say that the Riemann sum $\mathcal{R}(f, \mathcal{P}, \{\xi_i\})$ converges to a number A as $||\mathcal{P}|| \to 0$ if for any $\varepsilon > 0$, there is $\delta > 0$ such that

$$|A - \mathcal{R}(f, \mathcal{P}, \{\xi_i\})| < \varepsilon$$

for any $\xi_i \in [x_{i-1}, x_i]$ whenever $\|\mathcal{P}\| < \delta$.

Theorem 1.3. $f \in \Re[a,b]$ if and only if for any $\varepsilon > 0$, there is a partition \mathfrak{P} such that $U(f,\mathfrak{P}) - L(f,\mathfrak{P}) < \varepsilon$.

Lemma 1.4. $f \in \Re[a, b]$ if and only if for any $\varepsilon > 0$, there is $\delta > 0$ such that $U(f, \mathbb{P}) - L(f, \mathbb{P}) < \varepsilon$ whenever $\|\mathbb{P}\| < \delta$.

Proof. The converse follows from Theorem 1.3.

Assume that f is integrable over [a, b]. Let $\varepsilon > 0$. Then there is a partition $Q : a = y_0 < ... < y_l = b$ on [a, b] such that $U(f, Q) - L(f, Q) < \varepsilon$. Now take $0 < \delta < \varepsilon/l$. Suppose that $\mathcal{P} : a = x_0 < ... < x_n = b$ with $\|\mathcal{P}\| < \delta$. Then we have

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) = I + II$$

where

$$I = \sum_{i:Q\cap(x_{i-1},x_i)=\emptyset} \omega_i(f,\mathcal{P})\Delta x_i;$$

and

$$II = \sum_{i:Q \cap (x_{i-1}, x_i) \neq \emptyset} \omega_i(f, \mathcal{P}) \Delta x_i$$

Notice that we have

$$I \le U(f, \mathcal{Q}) - L(f, \mathcal{Q}) < \varepsilon$$

Date: February 29, 2016.

and

$$II \le (M-m) \sum_{i:Q \cap (x_{i-1}, x_i) \neq \emptyset} \Delta x_i \le (M-m) \cdot l \cdot \frac{\varepsilon}{l} = (M-m)\varepsilon.$$

The proof is finished.

Theorem 1.5. $f \in \mathbb{R}[a, b]$ if and only if the Riemann sum $\mathbb{R}(f, \mathbb{P}, \{\xi_i\})$ is convergent. In this case, $\Re(f, \mathbb{P}, \{\xi_i\})$ converges to $\int_a^b f(x) dx$ as $\|\mathbb{P}\| \to 0$.

Proof. For the proof (\Rightarrow) : we first note that we always have

$$L(f, \mathcal{P}) \leq \mathcal{R}(f, \mathcal{P}, \{\xi_i\}) \leq U(f, \mathcal{P})$$

and

$$L(f, \mathcal{P}) \leq \int_{a}^{b} f(x) dx \leq U(f, \mathcal{P})$$

for any $\xi_i \in [x_{i-1}, x_i]$ and for all partition \mathcal{P} .

Now let $\varepsilon > 0$. Lemma 1.4 gives $\delta > 0$ such that $U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon$ as $\|\mathcal{P}\| < \delta$. Then we have

$$|\int_{a}^{b} f(x)dx - \mathcal{R}(f, \mathcal{P}, \{\xi_i\})| < \varepsilon$$

as $\|\mathcal{P}\| < \delta$. The necessary part is proved and $\mathcal{R}(f, \mathcal{P}, \{\xi_i\})$ converges to $\int_a^b f(x) dx$. For $(\leftarrow) \cdot + \mathbf{I}$

or
$$(\Leftarrow)$$
: there exists a number A such that for any $\varepsilon > 0$, there is $\delta > 0$, we have

$$A - \varepsilon < \Re(f, \mathcal{P}, \{\xi_i\}) < A + \varepsilon$$

for any partition \mathcal{P} with $\|\mathcal{P}\| < \delta$ and $\xi_i \in [x_{i-1}, x_i]$. Now fix a partition \mathcal{P} with $\|\mathcal{P}\| < \delta$. Then for each $[x_{i-1}, x_i]$, choose $\xi_i \in [x_{i-1}, x_i]$ such that $M_i(f, \mathcal{P}) - \varepsilon \leq f(\xi_i)$. This implies that we have

$$U(f, \mathcal{P}) - \varepsilon(b - a) \le \mathcal{R}(f, \mathcal{P}, \{\xi_i\}) < A + \varepsilon.$$

So we have shown that for any $\varepsilon > 0$, there is a partition \mathcal{P} such that

(1.1)
$$U(f, \mathcal{P}) \le A + \varepsilon (1 + b - a)$$

By considering -f, note that the Riemann sum of -f will converge to -A. The inequality 1.1 will imply that for any $\varepsilon > 0$, there is a partition \mathcal{P} such that

$$A - \varepsilon(1 + b - a) \le L(f, \mathcal{P}) \le U(f, \mathcal{P}) \le A + \varepsilon(1 + b - a).$$

The proof is finished.

References

(Chi-Wai Leung) DEPARTMENT OF MATHEMATICS, THE CHINESE UNIVERSITY OF HONG KONG, SHATIN, HONG Kong

E-mail address: cwleung@math.cuhk.edu.hk

 $\mathbf{2}$